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Abstract. This is a class notes on techniques for proving “lower bounds.” The
leading example is the Paley-Zygmund argument. Closely related examples

include the Chung-Erdös inequality and even Cantelli’s inequality (which flips
to an upper bound). The Cramer-Rao inequality rounds out the list.

1. Paley-Zygmund Argument

Consider a nonnegative random variable X. It is natural to let EX define a
“unit of scale” and to look at probabilities such as P (X ≥ θEX) for 0 < θ < 1.
In combinatorial problems it is often of importance to get a lower bound on this
probability.

The classic way to proceed uses the Paley-Zygmund argument, which is also
called the second moment method. One begins with the “tautological” identity
determined by the scaled cut,

X = X1(X < θEX) +X1(X ≥ θEX).

One then has the semi-automatic estimates

EX ≤ θEX + E(X2)1/2P (X ≥ θEX)1/2,

so, when we clear the expectations to the left and square, we have

(1− θ)2(EX)2

E(X2)
≤ P (X ≥ θEX).

This simple inequality is at the heart of the “probabilistic method” which has been
used by Erdös and others to solve some remarkable combinatorial problems.

Paley and Zygmund (1932) introduced this argument in a study of functions on
the unit circle. They did not have probability in mind, but, after renomalization,
any function on set with finite measure can be viewed as a random variable.

2. Chung-Erdös Inequality

Let A1, A2, . . . , An be events in a probability space. How can one get a lower
bound on the probability of the event B = ∪Ai that at least one of these events
occurs? As in the Paley-Zygmund argument, one begins with a tautology,

n∑
i=1

1Ai = 1B

n∑
i=1

1Ai .
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By Cauchy-Schwarz and squaring we then have

{E(
n∑

i=1

1Ai)}2 ≤ P (B)E

[
{

n∑
i=1

1Ai}2
]
.

When we compute the expectations, we get the the lower bound∑
i,j P (Ai)P (Aj)∑
i,j P (Ai ∩Aj)

≤ P (∪n
i=1Ai) ,

where the sums are over all pairs of integers 1 ≤ i ≤ n and 1 ≤ j ≤ n.
This inequality is quite useful in arguments that refine the second Borel-Cantelli

lemma, and this was the purpose for which it was introduced in Chung and Erdös
(1952). Still, the argument has an inevitable quality to it, and it has been discovered
many times, see e.g. Kochen and Stone (1964).

The effective use of the Chung-Erdös inequality often depends on a wise choice
of the set of events to which it is applied. It is often applied to a blocks of events
Aj , Aj+1, . . . , Ak of events in some infinite sequence of events A1, A2, . . ., but some-
times it is applied to more sophisticated subsets of the sequence.

3. Cantelli’s Inequality

The Cantelli inequality is a mild refinement of Chebyshev’s inequality. To be
forthright, it is not particularly useful. Nevertheless, the the proof of Cantelli in-
equality demonstrates an amusing variation of the tautology-plus-Cauchy-Schwarz
argument.

Here we consider a random variable Y with EY = 0, we take t > 0 and note

0 ≤ t = E(t− Y ) ≤ E[(t− Y )1(t− Y ≥ 0)].

By Cauchy-Schwarz we have

0 ≤ t ≤ {E(t− Y )2}1/2P (t ≥ Y )1/2,

so, when we square and recall EY = 0, we have

t2 ≤ {E(Y 2) + t2}{1− P (Y > t)}.

Pure algebra then gives

P (Y > t) ≤ E(Y 2)

E(Y 2) + t2
.

To make the comparison with Chebyshev’s inequality, we take a random variable
X and let Y = X − EX. The last inequality now gives

P (X > t+ EX) ≤ VarX

VarX + t2
.

This bound on the upper tail that is better than Chebyshev’s inequality because of
the extra summand VarX in the denominator.
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4. Cramer-Rao Inequality

This inequality needs some terminology from mathematical statistics. We sup-
pose that we have a family of densities {fθ(x) : θ ∈ Θ}, and we assume we have a

function θ̂ : R → R that we call an esitimator. We also suppose that this estimator
is unbiased by which we mean that if X has the density fθ then

Eθ̂(X) = θ or, equivalently

∫
R
θ̂(x)fθ(x) dx = θ.

If we differentiate the last identity we have∫
R
θ̂(x)

d

dθ
fθ(x) dx = 1.

Just by the definition of the density function we for all θ that∫
R
fθ(x) dx = 1.

and we can differentiate this to get∫
R

d

dθ
fθ(x) dx = 0 =

∫
R
θ
d

dθ
fθ(x) dx

If we the difference we get our desired tautology,

1 =

∫
R
(θ̂(x)− θ)

d

dθ
fθ(x) dx =

∫
R
(θ̂(x)− θ)

d
dθfθ(x)

fθ(x)
fθ(x) dx,

and the Cauchy-Schwarz inequality gives us the bound,

1 ≤
∫
R
(θ̂(x)− θ)2fθ(x) dx

∫
R

{
d
dθfθ(x)

fθ(x)

}2

fθ(x) dx

The last integral has a name; it is called the expected Fisher information and it is
denoted by J(θ). It is a bit like entropy and it is typically easy to calculate.

When we divide by J(θ) we get

1

J(θ)
≤ Var(θ̂(X)).

This is known as the Cramer-Rao inequality, and it tells us that no unbiased esti-
mator can have a smaller variance than 1/J(θ). This bound is the basis for a large
part of what one knows about the efficiency of estimators. If you are working in
the class of unbiased estimators and if you attain the lower bound 1/J(θ), then you
know that no one can ever beat you — however hard they try.
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